M1. (a) (i)

Page 2

Allow - CONH - or - COHN -
Mark two halves separately
lose 1 each for missing trailing bonds at one or both ends or error in peptide link or either or both of H or OH on ends

Not allow -($\left.\mathrm{C}_{6} \mathrm{H}_{12}\right)-$ Ignore n
(ii) M1 in polyamides - H bonding

M2 in polyalkenes - van der Waals forces
Penalise forces between atoms or van der Waals bonds

M3 Stronger forces (of attraction) in polyamides Or H bonding is stronger (must be a comparison of correct forces to score M3)

Do not award if refer to stronger bonds
(b) (i) (nucleophilic) addition elimination

Not allow $\mathrm{N}-\mathrm{H}_{2}$

Minus sign on NH_{2} loses M1
M2 not allowed independent of M1, but allow M1 for correct attack on C+

+ rather than $\delta+$ on $\mathrm{C}=\mathrm{O}$ loses M2
If Cl lost with $\mathrm{C}=\mathrm{O}$ breaking, max 1 for M1
M3 for correct structure with charges but Ip on O is part of M4 only allow M4 after correct/ very close M3
For M4, ignore NH_{3} removing H^{+}but lose M4 for Cl removing H^{+}in mechanism, but ignore HCl as a product
(ii) N-methylpropanamide

Not N-methylpropaneamide
(c)

Allow - CONH - or $-\mathrm{COHN}-$
(d) (i) 2-amino-3-hydroxypropanoic acid
(ii)

Must be salts of aspartic acid
allow $-\mathrm{CO}_{2}^{-}$
allow $\mathrm{NH}_{2}-$
(iii) Penalise use of aspartic acid once in d (iii) and d (iv)

allow $-\mathrm{CO}_{2} \mathrm{H}$
allow ${ }^{+} \mathrm{NH}_{3}-$
don't penalize position of + on NH_{3}
(iv) Penalise use of aspartic acid once in d (iii) and d (iv)

(Br -
allow - CO_{2}^{-}
must show $C-N$ bond
don't penalize position of + on $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$

M2. (a) (i)

(ii)

(iii) hydrogen bonding (do not allow H-bonding) QWC do not penalise any error twice.
(b) (i)

(ii)

(iii) Isomer must be saturated or must not contain a double bond
(c)

(d) (i) heat/reflux with aqu NaOH
polyamide is hydrolysed (or undergoes hydrolysis) to form acid salt and alcohol QWC
(ii) e.g combustion
heat energy produced
toxic gases produced
1
[14]

M3. (a) (i)

(Ignore n or brackets, but trailing bonds are essential)
(ii) Addition or radical
(b) (i) 2-aminobutanoic (acid)
(ii)

(c) (i) $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$
(ii)

(1,4-)butan(e)dioic (acid)
(allow succinic, but not dibutanoic nor butanedicarboxylic acid)
(iii) Can be hydrolysed / can react with acid or base or water / can react with nucleophiles

M4.
(a) (i) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$

Addition or radical (QoL)
(ii) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ or with no brackets
butan(e)-2,3-diol or 2,3-butan(e)diol

2,3-dimethylbutan(e)dioic acid
2,3-dimethylbutan(e)dioyl chloride ignore -1,4-
condensation (QoL)
(iii) NaOH or HCl etc or $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Allow conc sulphuric/nitric

Page 8

(b) Structure 1

Allow - CONH- and -COHN-
Allow zwitterions
NOT polypeptides/repeating units

Structure 2 either of

(c) (i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
allow-Cl, -l
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$
(iii) (nucleophilic) substitution or from $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
if reduction written here, no further marks
further substitution/reaction occurs or other products are formed
Allow reduction forms only one product

Allow salts including $\mathrm{NH}_{4} \mathrm{Br}$
Allow HBr

