M1. (a) (i)

Allow -CONH- or - COHN -

Mark two halves separately

lose 1 each for missing trailing bonds at one or both ends or error in peptide link or either or both of H or OH on ends

Not allow $-(C_6H_{12})$ –
Ignore n

1

1

(ii) M1 in polyamides - H bonding

1

M2 in polyalkenes - van der Waals forces

Penalise forces between atoms or van der Waals bonds

1

1

M3 Stronger forces (of attraction) in polyamides
Or H bonding is stronger
(must be a comparison of correct forces to score M3)

Do not award if refer to stronger bonds

(b) (i) (nucleophilic) addition elimination

Not allow N-H₂

M2 not allowed independent of **M1**, but allow **M1** for correct attack on C+

+ rather than $^{\delta}$ + on C=O loses **M2**If CI lost with C=O breaking, max 1 for **M1 M3** for correct structure <u>with charges</u> but Ip on O is part of **M4**only allow **M4** after correct/ very close M3

For M4, ignore NH₃ removing H⁺ but lose **M4** for CI removing H⁺ in mechanism, but ignore HCl as a product

4

(ii) N-methylpropanamide

Not N-methylpropaneamide

1

(c)

Allow -CONH- or -COHN-

1

(d) (i) <u>2-amino-3-hydroxypropanoic acid</u>

1

(ii)

Must be salts of aspartic acid

allow -CO₂-

allow NH₂-

1

(iii) Penalise use of aspartic acid once in d(iii) and d(iv)

(iv) Penalise use of aspartic acid once in d(iii) and d(iv)

allow –CO₂must show C-N bond don't penalize position of + on N(CH₃)₃

[16]

M2. (a) (i)

1

1

(ii)

(iii) <u>hydrogen</u> bonding (do not allow H-bonding) QWC do not penalise any error twice.

1

(b) (i)

CH₃H

C-C-C

CH₃CH₃

1

(ii)

H₃C

C—C

CH₃CH

1

(iii) Isomer must be saturated or must not contain a double bond

1

2

(d) (i) heat/reflux with aqu NaOH poly(alkene) is inert/ no reaction

1

1

polyamide is $\underline{\text{hydrolysed}}$ (or undergoes $\underline{\text{hydrolysis}}$) to form acid salt and alcohol QWC

1

(ii) e.g combustion

1

heat energy produced

1

1

toxic gases produced

[14]

M3. (a)

(i)

(Ignore n or brackets, but trailing bonds are essential)

1

(ii) Addition or radical

(b) (i) 2-aminobutanoic (acid)

1

(ii)

1

(c) (i) $C_3H_4O_2$

1

(1,4-)butan(e)dioic (acid)

(allow succinic, but not dibutanoic nor butanedicarboxylic acid)

1

1

(iii) Can be hydrolysed / can react with acid or base or water / can react with nucleophiles

[8]

M4. (a) (i) CH₃CH=CHCH₃

Addition or radical (QoL)

1

(ii) CH₃CH(OH)CH(OH)CH₃ or with no brackets

1

1

1

butan(e)-2.3-diol or 2.3-butan(e)diol

<u>2.3</u>–dimethylbutan(e)dioic acid <u>2.3</u>–dimethylbutan(e)dioyl chloride ignore –1,4–

1

condensation (QoL)

1

(iii) NaOH or HCl etc or Na₂CO₃

Allow conc sulphuric/nitric

(b) Structure 1

Allow -CONH- and -COHN-

Allow zwitterions

NOT polypeptides/repeating units

Structure 2 either of

(c) (i) CH₃CH₂CH₂Br allow -Cl, -I

1

1

1

(ii) CH₃CH₂CN

1

(iii) (nucleophilic) substitution or from CH₃CH₂CH₂Br if reduction written here, no further marks

1

further substitution/reaction occurs or other products are formed Allow reduction forms only one product

1

1

one of (CH₃CH₂CH₂)₂NH (CH₃CH₂CH₂)₃N (CH₃CH₂CH₂)₄N⁺ Br⁻

Allow salts including NH₄Br

Allow HBr

[15]